Motorcycling Human Factors

Dr Alex Stedmon
CPsychol FIEHF FRSA

Human Systems Integration Group
Faculty of Engineering & Computing
Coventry University
alex.stedmon@coventry.ac.uk

Open Road Simulation Ltd
Nottingham, UK
alex@openroadsim.com
Motorcycling is a risky activity

- Motorcyclists represent 4% of licensed vehicles on UK roads
 - but they account for 21% of all UK road fatalities
 - In the order of 51 times more likely to be killed or seriously injured than car drivers

 (Dept of Transport, 2009)

- Most common motorcycle accidents
 - right of way violations or ‘SMIDSYs’
 - loss of control on bends (usually only the motorcyclist involved)
 - overtaking and filtering

 (Brown, 2002; Clarke et al 2004)

- How can Human Factors support Europe’s riders?
 - but … what is human factors?
Motorcycling Human Factors

- Human Factors
 - the science of human work
 - rider behaviour, motorcycle design and human-machine interaction

- Rider cognition
 - processes become more automatic with experience = more spare capacity

- Attention
 - split between task and environment (hazards, navigation, etc)
 - potential causing us to miss vital information

- Decision-making
 - distraction effects, confirmation bias
 - focusing on the wrong primary issues?
Motorcycling as an interactive system

- adapted from McInally (2003)
Motorcycling as an interactive system
The performance of one agent in the system can affect others in the same system.

Training, expertise and confidence
- differences between novice, experienced and advanced trained riders

Rider fatigue and alertness
- traffic conditions, filtering, junctions, traffic lights, bends
- risk taking behaviour (thrills vs danger)

Situational factors
- road surface – we’re always looking at it
- we don’t have sun visors or windscreen wipers!
- weather – tyre warm-up, tyre contact
- thermal comfort – physical and cognitive issues
Keeping it real or faking it?

- Keeping it real …
 - human-motorcycle interaction in real context of context
 - BUT not always ethical or practical

- … Faking it
 - simulation allows for complex experimental designs
 - employ a wide range of metrics
 - software captures wealth of data
 - controlled conditions
 - consistent repeatability
 - safety of the laboratory
 - mistakes allowed
 - distraction tasks are possible
 - potentially fewer resources
MotorcycleSim

- Coventry and Southampton working together
 - developed from STISIM-Drive driving simulation software
 - full size interactive motorcycle
 - rider interaction using real controls
 - reconfigurable riding scenarios

- Physical & functional fidelity
 - looks like the real system
 - behaves like the real system

- Principles associated with accidents
 - braking on bends!
 - swerving on straight roads!
Left hand bend hazard
Left hand bend hazard

Advanced riders

Safer profile – notice the hazard earlier, less correction and compensate before the hazard
Left hand bend hazard

Novice and Experienced riders

Dangerous profile – notice the hazard later and over-compensate past the hazard
Advanced systems and ITS

- **Advanced systems**
 - 3D audio
 - speech input

- **Integrated rider aids**
 - rider information/communication systems
 - entertainment systems

- **Geo-spatial information for riders**
 - couriers, paramedics, police
 - accident detection (e.g. SafeRider)
Advanced systems and ITS

- Transfer of technologies from aviation/military systems
- Technologies filtering from automotive applications
- Innovative designs based on user requirements?
Advanced systems and ITS

- Advanced systems
 - 3D audio
 - speech input

- Integrated rider aids
 - satnav systems
 - rider information
 - communication systems
 - entertainment systems

- Geo-spatial information for riders
 - couriers, paramedics, police
 - accident detection (e.g. SafeRider)
Advanced systems and ITS

- ITS
 - rider warnings and information
 - maintenance and diagnostic
 - lightning and visibility
 - braking
 - stability and balance
 - rider fitness
 - passive systems
 - communication
 - vehicle to vehicle communication
 - vehicle to infrastructure
ITS development needs

• Designing solutions that motorcyclists need and want!
 – understanding different motorcycling cultures
 – understanding issues of automation

• Formal user-requirements elicitation
 – iterative and participatory processes
 – diverse methodologies and diverse populations
 – expert and end user interviews and focus groups
 – define current practices, capabilities and issues
 – define future requirements
 – manage expectations